Pixels for CDFII in Run IIb

Precision tracking in the high radiation collider environment for a Higgs discovery at the Tevatron before LHC turn-on.

Pixels provide advantages

- radiation hard to ~30 fb-1 vs ~10 fb-1 for strips
 (Layer00 radius 3 times as harsh as Layer 0 radius)
- large S/N (noise ~100 e- vs ~2500 e-)
- pattern recognition: 3.3 M channels vs 14 K channels
- z resolution 60-120 μm possible

Pixels are feasible

- ATLAS-style sensors in production
- FPIX readout chip in advanced prototype
- cost and schedule can be made to fit into RunIIb plans

Keep strip option as a fallback

Overlap with BTeV and D0

Pixels are the preferred technology and they are available to us. CDF needs to decide soon (Jan. (2001) whether to pursue this option for RunIIb.

Pixel concept

ATLAS WAFER

FPIX1 chip

9/19/00

12 staves in φ each with 12 modules in r-z

Pixel concept

Channel Count

1 channel	50 µm x 400 µm	Pixel cell
1 channel	50 μm x 600 μm	Pixel cell (between readout chips)
2,880 channels	18 columns x 160 rows	FPIX chip
23,040 channels	single row of 8 FPIX chips	Sensor/Module
276,480 channels	12 modules in φ	Ring
3, 317,760 channels	12 rings along z	Complete detector

Mechanical

FPIX chip	total area (assumes 3mm for periphery and bonding pads+100µm all around)	0.82 cm x 0.77 cm
FPIX chip	thickness	280 µm
Sensor	active area	0.8 cm x 5.90 cm
Sensor	total area (assumes 1mm guard ring)	1 cm x 6.10 cm
Sensor	thickness	280 µm
Sensor	inner layer innermost radius (closest surface to beam pipe)	1.33 cm
Sensor	outer layer innermost radius	1.60 cm
Detector	length in z (assumes 1.5mm between modules)	75cm

Pixel concept

- Hits stored in cell
- Readout via column logic
- FPIX sends data to a pixel port card (serialized?)
- optical link to a pixel-FIB
- FIB controls pixels and receives data in a deep memory module, time orders hits, matches to L1 accept, sends data to VRB.
- Concept exists that pixel-FIB combines hits into "strips" for SVT trigger

Testbeam results

Position resolution better than 8 µm for most track angles

Large S/N~100 allows for better centroid finding

Overlaps with BTeV 10% scale test

Sensors (6 sensors/wafer)
(prototypes at \$5.5K, production \$2.5K)
Readout chip wafers (200 chips/wafer)
(first 10 at \$161K, next 10 at \$32K)
Bump bonding ~ sensor costs (UC Davis?)
DAQ development (port card, pixel-FIB)
Mechanical/cooling development (like L00)
Total CDF cost estimated at \$1M

Schedule

2001: Order sensors and readout chips Mechanical and DAQ design (\$500K)

2002: Build and test modules

Mechanical and DAQ prototypes

2003: Build and assemble staves
DAQ production

Oct 2003: Ready for data

Run 2b Pixels

The Detector and Environment

- Detector Specification (size, geometry, etc.)
 - Pixel Detector Properties
 - × Cabling
 - Cooling
- X Resolution & Occupancy Calculations
- X Readout
 - Triggering
 - Pixel Readout Issues
- ✗ Schedule & Cost

Group Activities & References

- Run2b Review Panel
- X Talks Given
 - Pixel Update 9/15/00 Run2b Meeting
 - Pixel Readout Development & Status -- 9/1/00 Run 2b Meeting
 - Inner Pixels -- General Proposal 6/21/00 Run 2b Meeting
 - Pixels -- General Intro Talk given by W. Wester 4/14/00 Run 2b Meeting
- Documents
 - Full BTeV PAC Proposal (Pixels are in chapter 4, starting on page 61)
 - ATLAS Pixel TDR
 - Inner Tracker and L1 Trigger Based on Pixel Detectors for D033 (D0 Note 3409)
 - Very initial version of CDF Pixel expression of intent
- X Other Home Pages
 - CDF Run2b Pixel Home Page
 - Fermilab Pixel Group Home Page
 - D0 Run 2 Silicon Home Page
 - ATLAS Pixel Home Page

Home D0 Run 2B

Agenda for today

Overview: W Wester (Fermilab)

ATLAS-style sensors: I Gorelov (U New Mexico)

FPIX and rad hard vertex group plans: D Christian (Fermilab)

Mechanical concept and issues: D Pellett (UC Davis)

Physics studies update: D Pellett (UC Davis)

Updated proposal draft: W Wester (Fermilab)

Discussion -- what additional information should we focus on providing for the CDF review/PAC presentation.